Extraction of Interesting Association Rules Using Genetic Algorithms

نویسندگان

  • Peter P. Wakabi-Waiswa
  • Venansius Baryamureeba
چکیده

The process of discovering interesting and unexpected rules from large data sets is known as association rule mining. The typical approach is to make strong simplifying assumptions about the form of the rules, and limit the measure of rule quality to simple properties such as support or confidence. Support and confidence limit the level of interestingness of the generated rules. Comprehensibility, J-Measure and predictive accuracy are metrics that can be used together to find interesting association rules. Because these measures have to be used differently as measures of the quality of the rule, they can be considered as different objectives of the association rule mining problem. The association rule mining problem, therefore, can be modelled as a multi-objective problem rather than as a single-objective problem. In this paper we present a Pareto-based multiobjective evolutionary algorithm rule mining method based on genetic algorithms. Predictive accuracy, comprehensibility and interestingness are used as different objectives of the association rule mining problem. Specific mechanisms for mutations and crossover operators together with elitism have been designed to extract interesting rules from a transaction database. Empirical results of experiments carried out indicate high predictive accuracy of the rules generated..

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Analysis of the Effectiveness of the Genetic Algorithms based on Extraction of Association Rules

Data Mining is most commonly used in attempts to induce association rules from transaction data which can help decision-makers easily analyze the data and make good decisions regarding the domains concerned. Most conventional studies are focused on binary or discrete-valued transaction data, however the data in real-world applications usually consists of quantitative values. In the last years, ...

متن کامل

Association Rules Extraction using Multi-objective Feature of Genetic Algorithm

Association Rule Mining is one of the most well liked techniques of data mining strategies whose primary aim is to extract associations among sets of items or products in transactional databases. However, mining association rules typically ends up in a really large amount of found rules, leaving the database analyst with the task to go through all the association rules and find out the interest...

متن کامل

Using a Data Mining Tool and FP-Growth Algorithm Application for Extraction of the Rules in two Different Dataset (TECHNICAL NOTE)

In this paper, we want to improve association rules in order to be used in recommenders. Recommender systems present a method to create the personalized offers. One of the most important types of recommender systems is the collaborative filtering that deals with data mining in user information and offering them the appropriate item. Among the data mining methods, finding frequent item sets and ...

متن کامل

An Efficient Algorithm to Automated Discovery of Interesting Positive and Negative Association Rules

Association Rule mining is very efficient technique for finding strong relation between correlated data. The correlation of data gives meaning full extraction process. For the discovering frequent items and the mining of positive rules, a variety of algorithms are used such as Apriori algorithm and tree based algorithm. But these algorithms do not consider negation occurrence of the attribute i...

متن کامل

A Survey of Association Rule Mining Using Genetic Algorithm

Data mining is the analysis step of the "Knowledge Discovery in Databases" process, or KDD. It is the process that results in the discovery of new patterns in large data sets. It utilizes methods at the intersection of artificial intelligence, machine learning, statistics, and database systems. The overall goal of the data mining process is to extract knowledge from an existing data set and tra...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008